Broadband full-color monolithic InGaN light-emitting diodes by self-assembled InGaN quantum dots
نویسندگان
چکیده
We have presented broadband full-color monolithic InGaN light-emitting diodes (LEDs) by self-assembled InGaN quantum dots (QDs) using metal organic chemical vapor deposition (MOCVD). The electroluminescence spectra of the InGaN QDs LEDs are extremely broad span from 410 nm to 720 nm with a line-width of 164 nm, covering entire visible wavelength range. A color temperature of 3370 K and a color rendering index of 69.3 have been achieved. Temperature-dependent photoluminescence measurements reveal a strong carriers localization effect of the InGaN QDs layer by obvious blue-shift of emission peak from 50 K to 300 K. The broadband luminescence spectrum is believed to be attributed to the injected carriers captured by the different localized states of InGaN QDs with various sizes, shapes and indium compositions, leading to a full visible color emission. The successful realization of our broadband InGaN QDs LEDs provide a convenient and practical method for the fabrication of GaN-based monolithic full-color LEDs in wafer scale.
منابع مشابه
Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy
Self-assembled InGaN quantum dots (QDs) have been grown using metalorganic vapor-phase epitaxy (MOVPE), without using antisurfactant. Using 120 s annealing, InGaN QDs have been successfully formed with a circular base diameter of 40 nm and an average height of 4 nm, with QDs density of 4 10 cm . The InGaN QDs have peak photoluminescence (PL) wavelengths of 519 and 509 nm for samples without and...
متن کاملFull-Color Single Nanowire Pixels for Projection Displays.
Multicolor single InGaN/GaN dot-in-nanowire light emitting diodes (LEDs) were fabricated on the same substrate using selective area epitaxy. It is observed that the structural and optical properties of InGaN/GaN quantum dots depend critically on nanowire diameters. Photoluminescence emission of single InGaN/GaN dot-in-nanowire structures exhibits a consistent blueshift with increasing nanowire ...
متن کاملCritical role of CdSe nanoplatelets in color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes.
Here we report CdSe nanoplatelets that are incorporated into color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes. The critical role of CdSe nanoplatelets as an exciton donor for the color conversion was experimentally investigated. The power conversion efficiency of the hybrid light-emitting diode was found to increase by 23% with the incorporation of the CdSe nanoplatele...
متن کاملPhosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology
Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED's color rendering index (CRI) are still problematic. Here, we use flip-chip ...
متن کاملDesign and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime
Staggered InGaN quantum wells (QWs) are investigated both numerically and experimentally as improved active region for light-emitting diodes (LEDs) emitting at 520–525 nm. Based on a self-consistent six-band k.p method, band structures of both two-layer staggered InxGa12xN/InyGa12yN QW and three-layer staggered InyGa12yN/InxGa12xN/InyGa12yN QW structures are investigated as active region to enh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016